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Abstract

A similarity solution for solidification of an under-cooled binary alloy melt in a semi-infinite, one-dimensional, insulated slot is devel-
oped. It is shown that this solution is a generalization of the known similarity solution for the solidification of an under-cooled pure melt,
and is a special case of the similarity solution for solidification of a binary alloy previously presented in the literature. The new solution is
used to quantify the effect of the Lewis number (ratio of thermal to solutal diffusivity) on the behavior of solidification. Limits on the
amount of under-cooling that will admit a physically meaningful solution are obtained.

© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

There is significant current interest in modeling dendritic
growth, see examples in [1-9]. The basic problem involves
the free dendritic growth from a circular solid seed placed
in a two-dimensional cavity containing an under-cooled
melt of a pure material. A more advanced problem is to
consider free dendritic growth into an under-cooled binary
alloy [7-9], where, in addition to heat transfer, the transport
of solute component needs to be considered. This latter
problem is a true test of the state of the art of both solidifi-
cation models and computational tools for phase change
problems. In developing these computational solutions it
is important to have appropriate analytical solutions so that
rigorous verification can be carried out, limit behaviors
investigated, and physical constraints identified.

In considering solidification problems which involve
under-cooling and solute transport there are two known
analytical similarity solutions in the literature. The first,
due to Rubinstein [10] and investigated by Alexiades and
Solomon [11], considers the one-dimensional solidification
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of a binary alloy. This problem is driven by the prescription
of a fixed temperature at the origin x = 0, and in typical pre-
sentations in the literature [12, p. 248, 11, p. 106, 9] the ini-
tial condition is a melt at a uniform composition with a
temperature at or above the liquidus, i.e., the melt is not
under-cooled. The second problem, presented in Carslaw
and Jaeger [13], is for the solidification of an under-cooled
melt in a one-dimensional insulated semi-infinite slot. Ini-
tially the slot contains an under-cooled melt and solidifica-
tion is initiated by introducing a solid seed at x = 0. In this
second problem the melt is of a pure material, i.e., solute
transport plays no role.

The objective of this work is to combine the concepts in
the Rubinstein [10] and Carslaw and Jaeger [13] solutions
to arrive at a similarity solution for the solidification of
an under-cooled binary alloy, i.e., develop an analytical
solution for solidification initiated by the placement of a
solid seed crystal that includes both solute transport and
under-cooling. Analysis is presented that shows that this
new solution can be viewed as a generalization of the
Carslaw and Jaeger [13] solution for the solidification of
an under-cooled melt, and a special case of the Rubinstein
[10] binary alloy similarity solution. In addition, the solu-
tion is used to investigate the influence of the Lewis number
(ratio of thermal diffusivity to solutal diffusivity) on the
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Nomenclature

solute concentration (wt%)

initial solute concentration (wt%)
specific heat (J/kg K)

mass diffusivity (m?/s)

length scale (m)

latent heat (J/kg)

Le = oy/D; Lewis number

h(’%bﬁg}(}

m slope of the liquidus line in the binary phase dia-
gram

M = —mc/L dimensionless liquidus slope

s position of solid-liquid interface

T temperature (K)

T fusion temperature of the solvent

Greek symbols

o thermal diffusivity in the liquid phase (m?/s)
A similarity variable

Superscript

* dimensioned quantity

Subscripts

s solid phase value

1 liquid phase value

solidification behavior and to identify physical limit condi-
tions for the problem.

2. Problem and governing equations

The problem domain consists of a one-dimensional
semi-infinite slot. Initially the slot is filled with an alloy
melt with a uniform composition and temperature below
the liquidus temperature of the alloy i.e., the slot contains
an under-cooled alloy melt. Solidification is initiated by
placing a thin solid layer, at the solidification equilibrium
temperature, at x = 0. If curvature (the slot domain is nar-
row) and kinetic effects are neglected, and there is sufficient
latent heat to over-balance the sensible heat in the melt, the
temperature of the liquid layer immediately adjacent to the
solid seed layer will increase to come into equilibrium with
the solid. This results in a negative temperature gradient
out of the liquid layer, which drives additional solidifica-
tion by removing the residual latent heat. In this way, the
solid layer will grow into the slot. In a binary alloy, as
new solid forms solute is rejected into the liquid phase. This
addition of solute into the liquid ahead of the solidification
front will control (reduce) the equilibrium temperature at
which solid forms.

To arrive at governing equations for the above problem
the following dimensionless numbers are introduced:

T — Ty —mC,y C* x*
T:— C:— = —
Lia G T
s* OC]l*
S:7, t= fz (1)

where the superscript (*) indicates a dimensioned quantity,
T" (K) is temperature, Ty is the fusion temperature of the
solvent, m < 0 is the slope of the liquidus line in the binary
phase diagram, C* (wt%) is the solute concentration, Cj is
the initial solute concentration in the melt, L (J/kg) is the
latent heat, ¢; (J/kg K) is the specific heat in the liquid
phase, s* (m) is the position of the sharp interface between
the solid and the liquid o (m?/s) is the thermal diffusivity in

the liquid phase, and ¢ (m) is a convenient length scale.
With these definitions the governing equations are:

Heat transport in the solid:

o o, O'T

— == <x < st 2
TR x < s(2) 2)
Heat transport in the liquid:

or T

_— = >

= x> () ()

Solute transport in the solid:
oC, 1 D, ¥C;

ot LeD ox?’
Solute transport in the liquid:

oc, 1 o*C
a—tlzﬁﬁ’ x = s(t) (5)

where the subscript s refers to the solid phase, the subscript
1 to the liquid phase, D is the mass diffusivity (m?/s) and
Le = o4/ Dy is the Lewis number.

0<x<s(r) (4)

Boundary conditions are: at x =0
oCs or

ax_ ) a_o (6)
as x — 0o
C—1, T—Ty<0 (7)

where T, <0 is the initial under-cooled temperature.
On the moving solid/liquid interface at x = s(f)

C = Ci(l), C, = kCi(t), T = Ti(t) = MC()(I — C,) (8)

where k is the partition coefficient (assumed constant) and
M= —mq/L,

os OT or ds

%, Al @ ®)
D, 10C, 10aC ds

Dile tx Ledx U7HGG (10)
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the last two conditions expressing the heat (Stefan condi-
tion) and mass balance at the interface.

3. A similarity solution

A similarity solution is sought in which the interface
movement is given by

s =2/t (11)

and the interface concentration C; and temperature 7; are
constants. Due to the fact that the slot is insulated this last
condition immediately leads to the solid phase solutions
T=T; and C,= C;. The temperature and concentration
solutions in the liquid phase are

erfc(ﬁ)
and
erfc("z‘/—}?)
C=1+(Ci—1)———~ 13
( >erfc(/1\/fé) (13)

The unknown values C;, 7; and 4 in (11)—(13), are found
from the simultaneous solution of the equation of the
liquidus line (8), the interface heat balance (9), and the
interface mass balance (10), i.e.,

T, — MCo(1 — C;) = 0 (14)
Iv/me’erfe(i) — (T; — To) = 0 (15)
(1 — k)Ciav/Ley/me “erfc(AvLe) — (Ci— 1) = 0 (16)

4. Analysis
4.1. Relationship to previous solutions

The development of the solution in (11)—(16) closely fol-
lows the approaches used in the solutions by Carslaw and
Jaeger [13] for solidification of a pure under-cooled melt,
and by Rubinstein [10] for the solidification of a binary
alloy. In this context it is worthwhile to establish explicit
connections between the solution (11)—(16) and those previ-
ously presented in the literature.

In the first place it is noted that a setting of &k =1 elim-
inates solute segregation and solute gradients. With this
setting (13) and (16) set a constant concentration
C = C;=1, throughout the domain and (14) establishes
an interface temperature of 7;=0. The net result, is a
reduction of (11)—(16) to the three equations

erfc(ﬁ)
S*Z/L\/E, T—T() TOW’ (X>S(t)),
Iv/me’erfe(i) + Ty =0 (17)

that exactly match those derived in the solution by Carslaw
and Jaeger [13] for solidification of a pure under-cooled

melt. Hence the solution (11)—(16) can be viewed as a gen-
eralization of the Carslaw and Jaeger [13] solution.

On the other hand, although the Rubinstein [10] solu-
tion is usually presented with an initial condition that
explicitly sets the liquid temperature at or above the equi-
librium liquidus temperature [9,11,12], thereby ruling out
under-cooling, there is no reason why the solution cannot
account for under-cooling. The governing transport equa-
tions for the Rubinstein problem with under-cooling match
those used in this work, i.e., (2)—(5). The only difference in
the problem formulation is the thermal condition at x = 0.
In the Rubinstein problem the insulated condition
0T/0x = 0 in (6) needs to be replaced by the Dirichlet con-
dition 7(0,t) = Ty, < T;. Satisfying this alternative bound-
ary condition modifies the solution (11)—(16) by adding the
thermal profile

erf (V2 x
Tsur+(Ti_Tsur)M (18)
erf (/g)
which results in the updated thermal balance
a OCsTi_Tsur 7}'2_“1 Ti_TO _2
TA— | ——————¢e¢ % ——————¢e “ =0 19
vr \/;lerf <%;—‘) erf(4) (19)

in place of (15). The original solution (11)—(16), satisfying
the insulated condition at x =0 can be readily recovered,
however, on simply setting Ty, = 7; in (18) and (19).
Hence the proposed solution (11)—(16) can be viewed as a
special case of the Rubinstein solution which has been
extended to account for under-cooling.

4.2. Effect of Lewis number

The most relevant parameter in the solution (11)—(16) is
the Lewis number Le. This dimensionless parameter char-
acterizes the relative roles of the thermal and solute diffu-
sion in controlling the solid-liquid interface movement.
The first panel in Fig. 1 shows the solute and temperature
profiles at dimensionless time 7= 100 for a case where
Le=1. As might be expected, the thermal and solutal
boundary layers have similar thicknesses. If the Lewis
number is decreased (see the second panel in Fig. 1 where
Le =0.1) however, the rate of the solute diffusion away
from the interface increases, the “pile up” of solute at the
solid-liquid interface is reduced, and the solutal boundary
layer becomes thicker than the thermal boundary layer. On
the other hand, if the Lewis number is increased (see the
third panel in Fig. 1 where Le = 10) the rate of solute dif-
fusion is reduced, the interface solute pile up increases and
the solutal boundary layer is thinner than the thermal
boundary layer.

To fully understand the limit behaviors at large and
small Lewis numbers consider the normalized variables
T/Ty and 1/, where through s, = A¢\/t the parameter A
determines the solidification front in a pure melt initially
under-cooled to T,. For a given set of conditions, Fig. 2
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Fig. 1. Concentration and temperature profiles at time ¢ = 100 for various
Lewis numbers.
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Fig. 2. Influence of Lewis number on interface movement and
temperature.

plots these normalized variables across nine decades of
Lewis number. As noted above, for small Lewis numbers
the diffusion of solute away from the interface is rapid.
In the limit of Le — 0 the diffusion is infinitely fast and
the solute in the liquid adjacent to the solid—liquid interface
remains at the initial concentration, i.e., C;= C, and

T;=0. In this case the solution (11)—(16) reduces to the
solution for an under-cooled pure material, see (17), previ-
ously presented in Carslaw and Jaeger [13]. At the opposite
extreme, as Le — oo the rate of solute diffusion away from
the interface is very slow. This results in a slowing of the
front movement A — 0 and, an increase in the interface
temperature towards the maximum, i.e., 7; — T.

4.3. Physical constraints on the solution

Extending an analysis presented by Alexiades and Solo-
mon [11], it is noted that the solution (12)—(16) is only
physically meaningful across a specified range of prescribed
under-cooling values. Alexiades and Solomon [11] note
that for physically meaningful values A > 0, the first term
in (15) is bounded by 0 < i\/ﬁeﬂzerfc(l) < 1, hence
T; = Ty = T; — 1. On noting that, in the limit A — 0 (16)
and (14) in turn give C; = 1 and T; = 0, whereas in the limit
/. — oo these equations give C;=1/k and T;= MC, —
MCy/k, the bounds on the under-cooling can be written as

MCy _
k

The physical interpretation is that, an under-cooling
approaching the upper limit (7, — 0) would lose the driv-
ing potential for the solidification, and an under-cooling
approaching the lower limit would not have enough resid-
ual latent heat to bring the liquid layer, adjacent to the
solid seed, to the equilibrium temperature. In the case of
a pure material (Cy = 1) or no solute partitioning (k =1)
the lower limit on the dimensionless under-cooling is —1.
Eq. (20) shows that the introduction of a binary alloy with
partitioning (k < 1) reduces this lower limit. In essence,
with a binary alloy, since the solute rejected at the interface
lowers the equilibrium temperature, less heat is required to
bring the liquid layer to equilibrium and the magnitude of
the under-cooling can be taken below the pure material
limit of Ty = —1.

0> Ty > MCy— 1 (20)

5. Conclusions

This paper has presented a similarity solution for the
solidification of an under-cooled binary alloy melt con-
tained in a semi-infinite insulated slot. Solidification is
initiated by introducing, at the origin, a solid seed at the
equilibrium temperature. Previously presented and closely
related solutions consider the solidification of a binary
alloy under a prescribed temperature at the origin [10] or
the solidification of an under-cooled pure material [13]
from an initial solid seed. The combination of the binary
alloy and under-cooling in one problem and solution pro-
vides a suitable test for the development of computational
algorithms designed to simulate the solidification of under-
cooled binary alloys. In addition, the proposed similarity
solution provides important quantitative insights in to
the relative roles of thermal and solute diffusive transport
during solidification (see Figs. 1 and 2), and identifies
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physical limits on the maximum amount of under-cooling
that will allow for growth from a solid seed, see (20).
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